To predict the workability of a tool structure at the design stage, it is necessary to calculate the parameters of the cut layer when this tool is used because the cut layer’s size determines the strength and dynamic characteristics of the cutting process.
It is known that the size and shape of the cut layer are affected by the allowance cutting scheme embedded in the tool design. Therefore, the parameters of the cut layer with the tool must be investigated taking into consideration the actual shapes and location of the cutting edges of the tool teeth and the cutting scheme with individual teeth.
Existing analytical dependences on determining the thickness of the cut layer do not take into consideration the group arrangement of the teeth, which have a different shape and location of their cutting edges. Therefore, a procedure for determining the thickness of the cut layer analytically has been proposed, using the example of circular saws with multidirectional teeth while taking into consideration the patterns in the arrangement of the cutting edges of individual teeth and the real movements of the tool during its operation.
The proposed procedure makes it possible to determine the parameters of the layer cut with the tool at both constant and progressive allowance cutting schemes. One can also specify the parameters of the cut layer at any time of the tool’s operation and analyze the change in the shape of the slice in time.
Based on the analysis of the parameters of the cut layer, it has been established that saws with multidirectional teeth do not work with the entire width of the cutting edge but only in its part, whose share does not exceed 55 % of the width of the tool.
The procedure reported here could be used to determine the loading of the cutting tool part with a more complex cutting scheme, which also includes tools that are operated by the form-generating method