2012
DOI: 10.1007/s00220-012-1641-6
|View full text |Cite
|
Sign up to set email alerts
|

Chiral Asymmetry and the Spectral Action

Abstract: We consider orthogonal connections with arbitrary torsion on compact Riemannian manifolds. For the induced Dirac operators, twisted Dirac operators and Dirac operators of Chamseddine-Connes type we compute the spectral action. In addition to the Einstein-Hilbert action and the bosonic part of the Standard Model Lagrangian we find the Holst term from Loop Quantum Gravity, a coupling of the Holst term to the scalar curvature and a prediction for the value of the Barbero-Immirzi parameter.

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

0
12
0

Year Published

2014
2014
2023
2023

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 9 publications
(12 citation statements)
references
References 37 publications
0
12
0
Order By: Relevance
“…where definitions ofR(x), A iin , see [20]. In addition, we proved the Kastler-Kalau-Walze type theorems for foliations with or without boundary associated with sub-Dirac operators in [16] Wres…”
Section: Introductionmentioning
confidence: 78%
See 1 more Smart Citation
“…where definitions ofR(x), A iin , see [20]. In addition, we proved the Kastler-Kalau-Walze type theorems for foliations with or without boundary associated with sub-Dirac operators in [16] Wres…”
Section: Introductionmentioning
confidence: 78%
“…Meanwhile, Pfäffle and Stephan considered compact Riemannian spin manifolds without boundary equipped with orthogonal connections, and investigated the induced Dirac operators in [19]. In [20], Pfäffle and Stephan considered orthogonal connections with arbitrary torsion on compact Riemannian manifolds, and for the induced Dirac operators, twisted Dirac operators and Dirac operators of Chamseddine-Connes type they computed the spectral action. For the associated Dirac operators with torsion D * T , D T [21], we got the Kastler-Kalau-Walze theorem associated to Dirac operators with torsion on 4-dimensional compact manifolds with boundary…”
Section: Introductionmentioning
confidence: 99%
“…Denote by σ l (A) the l-order symbol of an operator A. An application of (2.1.4) in [11] shows that 20) and the sum is taken over r − k + |α| + ℓ − j − 1 = −n, r ≤ −p 1 , ℓ ≤ −p 2 .…”
Section: Lower-dimensional Volumes Of Spin Manifolds With Boundarymentioning
confidence: 99%
“…Recently, Pfäffle and Stephan considered compact Riemannian spin manifolds without boundary equipped with orthogonal connections, and investigated the induced Dirac operators in [14]. In [15], Pfäffle and Stephan considered orthogonal connections with arbitrary torsion on compact Riemannian manifolds, and for the induced Dirac operators, twisted Dirac operators and Dirac operators of Chamseddine-Connes type they computed the spectral action.…”
Section: Introductionmentioning
confidence: 99%
“…[15] Let M be a 4-dimensional compact manifold without boundary and∇ be an orthogonal connection with torsion. Then we get the volumes associated to D * T D T on compact manifolds without boundary…”
mentioning
confidence: 99%