RESUMENEn este trabajo se presenta una expresión de la transformación general de Foldy-Wouthuysen a la representación quiral de las matrices de Dirac interactuando con un campo de fermión. La hipótesis es que a través de la multiplicación de la matriz de Pauli por las ecuaciones quirales de Maxwell en el caso de E i H , se obtiene la ecuación quiral de Dirac. Esta es la prueba del teorema de que la mecánica de ondas de partícula cuántica representa una electrodinámica especializada.Palabras clave: Transformación de Foldy-Wouthuysen, ecuación quiral de Dirac, electrodinámica.
ABSTRACT
In this paper we offer an expression of the general Foldy-Wouthuysen transformation in the chiral representation of Dirac matrices interacting with fermion eld. Our hypothesis is that through the multiplication of the Pauli matrix and Maxwell's chiral equations in the case of E i H
CHIRAL DIRAC MATRICESThe paper offers an expression of the general FoldyWouthuysen transformation in the chiral representation of Dirac matrices interacting with fermion eld x t , . The paper [1, 2] discuss the theory of interacting quantum elds in the Foldy-Wouthuysen representation [3]. These papers offer, in particular, the relativistic nonlocal Hamiltonian H FW in the form of a series in terms of powers of charge e. Quantum electrodynamics in the Foldy-Wouthuysen (FW) representation has been formulated using Halmitonian H FW and some quantum electrodynamics processes have been calculated within the lowest-order perturbation theory. As a result, the conclusion has been made that the FW representation describes some quasi-classic states in the quantum eld theories. Both particles and antiparticles are available in these states. Particles, as well as antiparticles, interact with each other. However, there is no interaction of real particles with antiparticles -such interaction is possible only in intermediate (virtual) states. The FW representation modi cation is required to take into a account real particle/antiparticle interactions. In the papers [1,2]