In recent years, photon routing has garnered considerable research activity due to its key applications in quantum networking and optical communications. This paper studies the single photon routing scheme in many-emitter disordered chiral waveguide quantum electrodynamics (wQED) ladders. The wQED ladder consists of two one-dimensional lossless waveguides simultaneously and chirally coupled with a chain of dipole-dipole interacting two-level quantum emitters (QEs). In particular, we analyze how a departure from the periodic placement of the QEs due to temperature-induced position disorder can impact the routing probability. This involves analyzing how the interplay between the collective atomic effects originating from the dipole-dipole interaction and disorder in the atomic location leading to single-photon localization can change the routing probabilities. As for some key results, we find that the routing probability exhibits a considerable improvement (more than value) for periodic and disordered wQED ladders when considering lattices consisting of twenty QEs. This robustness of collective effects against spontaneous emission loss and weak disorders is further confirmed by examining the routing efficiency and localization length for up to twenty QE chains. These results may find applications in quantum networking and distributed quantum computing under the realistic conditions of imperfect emitter trappings.