Chiral supramolecular gels, in which small organic molecules self-assemble into chiral nanostructures and entangle each other to immobilize solvents through various noncovalent interactions, can work as a matrix for enantioselective recognition on chiral analytes. Through gelation and the formation of well-defined nanostructures, the chiral sense of the component molecules can be accumulated or amplified, and thus, the enantioselective recognition ability can be enhanced. Furthermore, a chiral microenvironment formed in the gel networks could provide additional stereochemical recognition geometry and attribute to efficient recognition. In this focus review, enantioselective recognition on chiral analytes through chiral supramolecular gels, with either amplified signals or the gel-sol phase transition, is discussed. This review is expected to provide useful insights into the design and fabrication of supramolecular gel systems with chiral features and high enantioselectivity.