“…Furthermore, these compounds have turned out to be particularly well suited for investigating different chiral processes and, particularly, supramolecular chirality, because of their specific and highly appropriate spectral, physico-chemical and synthetic characteristics, facile handling and superior propensity to form various supramolecular assemblies [2]. Furthermore, this kind of molecular and supramolecular system, so far, has attracted considerable attention of the scientific OPEN ACCESS community on account of the wide applicability in different fields of fundamental and applied sciences and modern technologies lying behind the judicious design of various chiroptical devices and sensors, molecular switches and machines, enantioselective materials and catalysts, as well documented in numerous reviews discussing these topics to a greater or lesser extent [3][4][5][6][7][8][9][10][11][12][13][14][15]. In general, chirality in the porphyrin-based supramolecular systems may be generated either via the intrinsic chiral modification of achiral porphyrinoids, by employing naturally occurring chiral pigments or via the external chiral field.…”