2017
DOI: 10.3390/ijms18020369
|View full text |Cite
|
Sign up to set email alerts
|

Chitosan-Recombinamer Layer-by-Layer Coatings for Multifunctional Implants

Abstract: The main clinical problems for dental implants are (1) formation of biofilm around the implant—a condition known as peri-implantitis and (2) inadequate bone formation around the implant—lack of osseointegration. Therefore, developing an implant to overcome these problems is of significant interest to the dental community. Chitosan has been reported to have good biocompatibility and anti-bacterial activity. An osseo-inductive recombinant elastin-like biopolymer (P-HAP), that contains a peptide derived from the … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
36
0

Year Published

2018
2018
2023
2023

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 55 publications
(40 citation statements)
references
References 68 publications
(96 reference statements)
1
36
0
Order By: Relevance
“…Particularly, LbL technology presented several advantages for biomedicine: (i) deposition of homogeneous films with controlled thickness, (ii) high loading capacities and controlled release of biomolecules/drugs of various nature, and (iii) coating stability under physiological conditions. This made the LbL method one of the most rapidly growing strategies for generating thin film coatings of biomedical scaffolds [ 3 , 4 , 5 , 6 ], patterned surfaces [ 7 , 8 ], medical devices [ 9 , 10 ], implants [ 11 , 12 ], and a range of alternate bioapplications ( Figure 1 ); while multilayer capsules became promising nano- and micro-carriers for drug delivery applications [ 1 , 13 , 14 , 15 , 16 , 17 , 18 , 19 ].…”
Section: Biopolymer-based Multilayersmentioning
confidence: 99%
“…Particularly, LbL technology presented several advantages for biomedicine: (i) deposition of homogeneous films with controlled thickness, (ii) high loading capacities and controlled release of biomolecules/drugs of various nature, and (iii) coating stability under physiological conditions. This made the LbL method one of the most rapidly growing strategies for generating thin film coatings of biomedical scaffolds [ 3 , 4 , 5 , 6 ], patterned surfaces [ 7 , 8 ], medical devices [ 9 , 10 ], implants [ 11 , 12 ], and a range of alternate bioapplications ( Figure 1 ); while multilayer capsules became promising nano- and micro-carriers for drug delivery applications [ 1 , 13 , 14 , 15 , 16 , 17 , 18 , 19 ].…”
Section: Biopolymer-based Multilayersmentioning
confidence: 99%
“…PLGA(Ag-Fe3O4)-coated dental implants [175] Sm 7 inhibited bacteria adherence Ag nanoparticles coated on titanium [179] E coli, Sa showed antibacterial effect and sustained release for 7 days Antibiotics doxycycline-coated abutment surfaces [180] Se 8 inhibited the bacterial growth; showed sustained release for least 2 weeks Tetracycline-containing fibers coated titanium implant [171] Pg, Fn 9 ,Pi 10 , Aa showed inhibition of biofilm and kept releasing for 3 days silica-gentamycin coated titanium implant [170] Sa showed antibacterial effect and sustained release for 14 days Tetracycline loaded nanofibers coated titanium implant [43] Aa, Fn, Pg, Pi Showed anti-bacterial effect Tetracycline loaded titanium [181] Pg showed antibacterial efficiency and sustained release for 15 days Cationic antibacterial agents chlorhexidine hexametaphosphate nanoparticles coated titanium [182] Sg demonstrated antibacterial effect and sustained release of soluble chlorhexidine for 99 days The PIXIT implant containing polysiloxane oligomers and chlorhexidine gluconate [183] Clinic trail controlled bacterial adhesion; reduced the bacterial species involved with long-term failure of dental implant Dimethylaminododecyl Methacrylate(DMADDM) coated dental implant [172] saliva-derived biofilm inhibited biofilm growth and regulated microecosystem Bioactive antibacterial agents Chitosan/P-HAP bi-layers coated titanium implant [184] Sg Demonstrated an appropriate mouse pre-osteoblastic cell response, and significant anti-bacterial activity * The bacterial model were showed in abbreviated form: 1 Such kinds of dual-functional DDS not only show antibacterial effects without affecting biocompatibility, but also help promote bone regeneration, which has excellent application potential. However, long-term drug release and multifunctional dental implant research are still limited.…”
Section: Coating Type Anti-bacterial Experiments Model * Resultsmentioning
confidence: 99%
“…Chitosan is a biocompatible, biodegradable, osteoconductive, and excellent wound healing accelerator with anti-inflammatory properties [13,14] . Because of these properties, chitosan has been investigated as a coating for implant materials to promote osseointegration in vitro and in vivo [15,16] . vol% water/ethanol solution that was acidified to 4.5 pH with 10 M acetic acid.…”
Section: Introductionmentioning
confidence: 99%