Reinforced bar corrosion induced by chloride ingression is one of the most significant threats to the durability of concrete structures in marine environments. The concrete cover thickness, compressive strength, chloride diffusion coefficient, and surface defects of reinforced concrete in the Jiaozhou Bay sea-crossing railway bridge were measured. The temperature and relative humidity in the concrete and the loading applied onto the reinforced concrete were monitored. Based on the DuraCrete model, a revised model for the service life prediction of concrete structures was established, considering the effects of temperature and loading on the chloride diffusion coefficient. Further, the reliability indexes of the reinforced concrete box girder, pier, and platform, located in the marine and land sections, in relation to service lives lasting various numbers of years, were calculated. The measured and calculated results show that the mean cover thicknesses of concrete piers in the marine and land sections are 52 mm and 36 mm, respectively, and the corresponding standard deviations are 5.21 mm and 3.18 mm, respectively. The mean compressive strengths of concrete in the marine and land sections are 56 MPa and 46 MPa, respectively. The corresponding standard deviations are 2.45 MPa and 2.67 MPa, respectively. The reliability indexes of the reinforced concrete box girder and platform in the marine section, under the condition of a service life of 100 years, are 1.81 and 1.76, respectively. When the corrosion-resistant reinforced bar was used in the pier structure in the marine section, its reliability index increased to 2.01. Furthermore, the reliability index of the reinforced concrete damaged by salt fog in the land section was 1.71. Appl. Sci. 2019, 9, 3570 2 of 18 in particular, those exposed to marine environments, has been recognized as an effective means to ensure the service life of concrete structures, which has been a focus of researchers and engineers all over the world [11][12][13].Service life prediction modeling has become one of the current major issues in the design of concrete structures. Using the third-moment method, Zhang [14] developed a time-dependent probability assessment for chloride-induced corrosion of RC structures. In order to provide corrective parameters for service life prediction, Li [15] investigated the time-dependent chloride penetration into concrete in marine environments. Considering the effect of the materials' heterogeneity when exposed to a marine tidal zone, Wang [16] developed a service life prediction model. Attari and Mcnally [17] explored a probabilistic assessment of the influence of the age factor on the service life prediction using concrete with limestone cement/ground granulated blast slag (GGBS) binders. Yu [18,19] developed a service life prediction model considering freeze-thaw fatigue, taking into account fly ash and slag. Hackl and Kohler [20] developed a reliability assessment which uses the coupled effect of corrosion initiation and progression to represent th...