H 2 production via electrocatalytic water splitting is greatly hindered by the sluggish oxygen evolution reaction (OER). The urea oxidation reaction (UOR) draws specific attention not only because of its lower theoretical voltage of 0.37 V compared with OER (1.23 V), but also for treating sewage water. Herein, Ni/NiO nanosheets with an ultrathin N-doped C layer containing a Schottky Ni and NiO heterointerface is constructed. Because of the self-driven charge redistribution at the heterointerface, janus charge domains are successfully created to drive the cleavage of urea molecules. Meanwhile, the synergistic effect between N-doped C and Ni/NiO restrains the deactivation of active sites in alkaline solution. The catalyst displays 1.35 V for UOR at 10 mA/cm 2 , 0.27 V lower than that of OER. The final potential increase is only 2 mV after long-term stability test of 12 h for UOR, much smaller than the uncoated sample (38 mV). The present work shows that C-coated transition metal nanomaterials with oxygen vacancies and a Schottky heterointerface are promising candidates for simultaneously boosting UOR with both high activity and long-term stability.