Having good information about the parameters that impact water quality can improve the management of water distribution systems in the short term (optimizing disinfection) and the long term (planning rehabilitation). Full-scale data on the degradation of the residual disinfectant for various pipe characteristics are difficult to obtain but necessary. As the most common disinfectant is chlorine, this paper aims to determine the most important pipe and/or hydraulic system characteristics in the chlorine degradation coefficients. Such characteristics were identified based on statistical analyses that relate them with range values of bulk (kb) and pipe wall (kw) degradation coefficients estimated in full-scale conditions in a real distribution system. The results showed that among pipe characteristics, the period of installation impacts significantly kw and kt. Results of kw for three different materials confirmed that residual chlorine degradation at the pipe walls for grey-cast iron, which is older and metallic, is much higher than that for ductile cast iron and PVC pipes. In older pipes, up to 97% of residual chlorine can be degraded at the pipe walls, while the role of bulk reactions can reach about 35% in newer pipes. The obtained information can be integrated to identify pipes for rehabilitation/renewal and locations for booster rechlorination.