Chloroplast division in plant cells is orchestrated by a complex macromolecular machine with components positioned on both the inner and outer envelope surfaces. The only plastid division proteins identified to date are of endosymbiotic origin and are localized inside the organelle. Employing positional cloning methods in Arabidopsis in conjunction with a novel strategy for pinpointing the mutant locus, we have identified a gene encoding a new chloroplast division protein, ARC5. Mutants of ARC5 exhibit defects in chloroplast constriction, have enlarged, dumbbellshaped chloroplasts, and are rescued by a wild-type copy of ARC5. The ARC5 gene product shares similarity with the dynamin family of GTPases, which mediate endocytosis, mitochondrial division, and other organellar fission and fusion events in eukaryotes. Phylogenetic analysis showed that ARC5 is related to a group of dynamin-like proteins unique to plants. A GFP-ARC5 fusion protein localizes to a ring at the chloroplast division site. Chloroplast import and protease protection assays indicate that the ARC5 ring is positioned on the outer surface of the chloroplast. Thus, ARC5 is the first cytosolic component of the chloroplast division complex to be identified. ARC5 has no obvious counterparts in prokaryotes, suggesting that it evolved from a dynamin-related protein present in the eukaryotic ancestor of plants. These results indicate that the chloroplast division apparatus is of mixed evolutionary origin and that it shares structural and mechanistic similarities with both the cell division machinery of bacteria and the dynamin-mediated organellar fission machineries of eukaryotes.T he chloroplasts of plants and algae are widely believed to have evolved only once from a free-living cyanobacterial endosymbiont (1). Over evolutionary time, many of the genes once present in the endosymbiont have been transferred to the nuclear genome where they have acquired sequences encoding transit peptides that direct their gene products back to the chloroplast (1, 2). This scenario describes the origin of the five previously identified plastid division proteins in plants, all of which evolved from related cell division proteins in cyanobacteria, are encoded in the nucleus, and are localized inside the chloroplast. These include FtsZ1 and FtsZ2, tubulin-like proteins that localize to a ring at the site of plastid constriction (3-10), MinD and MinE, which regulate placement of the plastid division site (11-13), and ARTEMIS, which appears to mediate constriction of the envelope membranes (14).Despite localization of the previously identified plastid division proteins inside the chloroplasts in plant cells, ultrastructural studies have shown that plastid division entails the coordinated activity of components localized outside as well as inside the organelle. In plants, the chloroplast division complex comprises electron-dense structures situated both on the stromal surface of the inner envelope membrane and on the cytosolic surface of the outer membrane (15). These structur...