Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
As lockdowns and stay-at-home orders start to be lifted across the globe, governments are struggling to establish effective and practical guidelines to reopen their economies. In dense urban environments with people returning to work and public transportation resuming full capacity, enforcing strict social distancing measures will be extremely challenging, if not practically impossible. Governments are thus paying close attention to particular locations that may become the next cluster of disease spreading. Indeed, certain places, like some people, can be “super-spreaders”. Is a bustling train station in a central business district more or less susceptible and vulnerable as compared to teeming bus interchanges in the suburbs? Here, we propose a quantitative and systematic framework to identify spatial super-spreaders and the novel concept of super-susceptibles, i.e. respectively, places most likely to contribute to disease spread or to people contracting it. Our proposed data-analytic framework is based on the daily-aggregated ridership data of public transport in Singapore. By constructing the directed and weighted human movement networks and integrating human flow intensity with two neighborhood diversity metrics, we are able to pinpoint super-spreader and super-susceptible locations. Our results reveal that most super-spreaders are also super-susceptibles and that counterintuitively, busy peripheral bus interchanges are riskier places than crowded central train stations. Our analysis is based on data from Singapore, but can be readily adapted and extended for any other major urban center. It therefore serves as a useful framework for devising targeted and cost-effective preventive measures for urban planning and epidemiological preparedness.
As lockdowns and stay-at-home orders start to be lifted across the globe, governments are struggling to establish effective and practical guidelines to reopen their economies. In dense urban environments with people returning to work and public transportation resuming full capacity, enforcing strict social distancing measures will be extremely challenging, if not practically impossible. Governments are thus paying close attention to particular locations that may become the next cluster of disease spreading. Indeed, certain places, like some people, can be “super-spreaders”. Is a bustling train station in a central business district more or less susceptible and vulnerable as compared to teeming bus interchanges in the suburbs? Here, we propose a quantitative and systematic framework to identify spatial super-spreaders and the novel concept of super-susceptibles, i.e. respectively, places most likely to contribute to disease spread or to people contracting it. Our proposed data-analytic framework is based on the daily-aggregated ridership data of public transport in Singapore. By constructing the directed and weighted human movement networks and integrating human flow intensity with two neighborhood diversity metrics, we are able to pinpoint super-spreader and super-susceptible locations. Our results reveal that most super-spreaders are also super-susceptibles and that counterintuitively, busy peripheral bus interchanges are riskier places than crowded central train stations. Our analysis is based on data from Singapore, but can be readily adapted and extended for any other major urban center. It therefore serves as a useful framework for devising targeted and cost-effective preventive measures for urban planning and epidemiological preparedness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.