Exocytic transport of transmembrane receptors and secreted ligands provides the basis for cellular communication in animals. The RAB8/RAB3/RAB27 trafficking regulators function in transport processes towards the cell membrane. The small G-proteins recruit a diversity of effectors that mediate transport along microtubule and actin tracks, as well as membrane tethering and fusion. SPIRE actin nucleators organise local actin networks at exocytic vesicle membranes. By complex formation with class-5 myosins, vesicle transport track generation and motor protein activation are coordinated. Our phylogenetic analysis traced the onset of SPIRE function back to the origin of the Holozoa. We have identified SPIRE in the closest unicellular relatives of animals, the choanoflagellates, and the more distantly related ichthyosporeans. The discovery of a SPIRE-like protein encoding a KIND and tandem-WH2 domains in the amoebozoan Physarum polycephalum suggests that the SPIRE-type actin nucleation mechanism originated even earlier. Choanoflagellate SPIRE interacts with RAB8, the sole choanoflagellate representative of the metazoan RAB8/RAB3/RAB27 family. Major interactions including MYO5, FMN-subgroup formins and vesicle membranes are conserved between the choanoflagellate and mammalian SPIRE proteins and the choanoflagellate Monosiga brevicollis SPIRE protein can rescue mouse SPIRE1/2 function in melanosome transport. Genome duplications generated two mammalian SPIRE genes (SPIRE1 and SPIRE2) and allowed for the separation of SPIRE protein function in terms of tissue expression and RAB GTPase binding. SPIRE1 is highest expressed in the nervous system and interacts with RAB27 and RAB8. SPIRE2 shows high expression in the digestive tract and specifically interacts with RAB8. We propose that at the dawn of the animal kingdom a new transport mechanism came into existence, which bridges microtubule tracks, detached vesicles and the cellular actin cytoskeleton by organising actin/myosin forces directly at exocytic vesicle membranes.The new degree of freedom in transport may reflect the increased demands of the sophisticated cellular communications in animals.