The innate immune response to Trypanosoma cruzi infection comprises several pattern recognition receptors (PRRs), including TLR-2, -4, -7, and -9, as well as the cytosolic receptor Nod1. However, there are additional PRRs that account for the host immune responses to T. cruzi. In this context, the nucleotide-binding oligomerization domain–like receptors (NLRs) that activate the inflammasomes are candidate receptors that deserve renewed investigation. Following pathogen infection, NLRs form large molecular platforms, termed inflammasomes, which activate caspase-1 and induce the production of active IL-1β and IL-18. In this study, we evaluated the involvement of inflammasomes in T. cruzi infection and demonstrated that apoptosis-associated speck–like protein containing a caspase recruitment domain (ASC) inflammasomes, including NLR family, pyrin domain–containing 3 (NLRP3), but not NLR family, caspase recruitment domain–containing 4 or NLR family, pyrin domain–containing 6, are required for triggering the activation of caspase-1 and the secretion of IL-1β. The mechanism by which T. cruzi mediates the activation of the ASC/NLRP3 pathway involves K+ efflux, lysosomal acidification, reactive oxygen species generation, and lysosomal damage. We also demonstrate that despite normal IFN-γ production in the heart, ASC−/− and caspase-1−/− infected mice exhibit a higher incidence of mortality, cardiac parasitism, and heart inflammation. These data suggest that ASC inflammasomes are critical determinants of host resistance to infection with T. cruzi.