A growing body of evidence indicates that autophagy, an intracellular degradation pathway, profoundly affects Alzheimer's disease (AD) pathogenesis. Autophagy mediates the degradation of neurotoxic material and damaged organelles, allowing their clearance by glial and neuronal cells, while impaired autophagy may account for the accumulation of protein aggregates. Accordingly, dysfunctional autophagy is one of AD hallmarks; it occurs early in the disease development, which makes it an attractive therapeutic intervention target. Therefore, in recent years, the potential of autophagy induction as a treatment for AD has been studied extensively using various autophagy inducers, most of which are already in clinical practice for other medical conditions. Albeit promising results, including in AD clinical trials, this therapeutic strategy still requires careful consideration in order to fully understand the role of autophagy in AD pathogenesis and to further improve the outcomes. This review summarizes the current findings in this field and raises open questions and new prospects.