AbstractHost lipid composition influences many stages of the influenza A virus (IAV) entry process, including: initial binding of IAV to sialylated glycans, fusion between the viral envelope and the host membrane, and the formation of a fusion pore through which the viral genome is transferred into a target cell. In particular, target membrane cholesterol has been shown to preferentially associate with virus receptors and alter physical properties of the membrane like fluidity and curvature. These properties affect both IAV binding and fusion, which makes it difficult to isolate the role of cholesterol in IAV fusion from receptor binding effects. Here, we develop a new fusion assay that uses synthetic DNA-lipid conjugates as surrogate viral receptors to tether virions to target vesicles. To avoid the possibly perturbative effect of adding a self-quenched concentration of dye-labeled lipids to the viral membrane, we tether virions to lipid-labeled target vesicles, and use fluorescence microscopy to detect individual, pH-triggered IAV membrane fusion events. Through this approach, we find that cholesterol in the target membrane enhances the efficiency of single-particle IAV lipid mixing, while the rate of lipid mixing is independent of cholesterol composition. We also find that the single-particle kinetics of influenza lipid mixing to target membranes with different cholesterol compositions is independent of receptor binding, suggesting that cholesterol-mediated spatial clustering of viral receptors within the target membrane does not significantly affect IAV hemifusion. These results are consistent with the hypothesis that target membrane cholesterol increases lipid mixing efficiency by altering host membrane curvature.Statement of SignificanceInfluenza A virus is responsible for millions of cases of flu each year. In order to replicate, influenza must enter a host cell through virus membrane fusion, and cholesterol in the target membrane is vital to the dynamics of this process. We report a receptor-free, single virus fusion assay that requires no fluorescent labeling of virus particles. We use this assay to show that cholesterol increases the fraction of fusion events in a manner that is correlated with the spontaneous curvature of the target membrane but is independent of receptor binding. This assay represents a promising strategy for studying viral fusion processes of other enveloped viruses.