Background and purpose: M 1 muscarinic ACh receptors (mAChRs) represent an attractive drug target for the treatment of cognitive deficits associated with diseases such as Alzheimer's disease and schizophrenia. However, the discovery of subtypeselective mAChR agonists has been hampered by the high degree of conservation of the orthosteric ACh-binding site among mAChR subtypes. The advent of functional screening assays has enabled the identification of agonists such as AC-42 (4-nbutyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine), which bind to an allosteric site and selectively activate the M 1 mAChR subtype. However, studies with this compound have been limited to recombinantly expressed mAChRs. Experimental approach: In this study, we have compared the pharmacological profile of AC-42 and a close structural analogue, 77-LH-28-1 (1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolinone) at human recombinant, and rat native, mAChRs by calcium mobilization, inositol phosphate accumulation and both in vitro and in vivo electrophysiology. Key results: Calcium mobilization and inositol phosphate accumulation assays revealed that both AC-42 and 77-LH-28-1 display high selectivity to activate the M 1 mAChR over other mAChR subtypes. Furthermore, 77-LH-28-1, but not AC-42, acted as an agonist at rat hippocampal M 1 receptors, as demonstrated by its ability to increase cell firing and initiate gamma frequency network oscillations. Finally, 77-LH-28-1 stimulated cell firing in the rat hippocampus in vivo following subcutaneous administration. Conclusions and implications: These data suggest that 77-LH-28-1 is a potent, selective, bioavailable and brain-penetrant agonist at the M 1 mAChR and therefore that it represents a better tool than AC-42, with which to study the pharmacology of the M 1 mAChR. (2008) 154, 1104-1115 doi:10.1038/bjp.2008 published online 5 May 2008 Keywords: muscarinic receptors; selective agonist; allosteric; AC-42; 77-LH-28-1; calcium mobilization; inositol phosphate; cell firing; network oscillations There is a wide array of pharmacological tools with which to study mAChRs. For example, N-methyl scopolamine, quinuclidinylbenzilate, pirenzepine and darifenacin are among numerous mAChR antagonists, and ACh and oxotremorine-M among mAChR agonists, which have been used in unlabelled and radiolabelled forms to characterize the localization, pharmacology and function of mAChRs. Unfortunately, most of these pharmacological tools exhibit poor selectivity between mAChR subtypes (Caulfield and Birdsall, 1998;Ellis, 2002). Those agents that do display high degrees of mAChR subtype selectivity are few in number and when discovered are often shown to interact with an allosteric, rather than the orthosteric, site as exemplified by the highly selective M 1 receptor peptide antagonist MT-7 (muscarinic toxin 7; Olianas et al., 2000).
British Journal of PharmacologyTherefore, the identification of selective M 1 mAChR agonists would represent a significant advance in mAChR pharmacology and could offer t...