Paracetamol overdose is the leading cause of druginduced hepatotoxicity worldwide. Because of N-acetyl cysteine's limited therapeutic efficacy and safety, searching for alternative therapeutic substitutes is necessary. This study investigated four citrus juices: Citrus sinensis L. Osbeck var. Pineapple (pineapple sweet orange), Citrus reticulata Blanco × Citrus sinensis L. Osbeck (Murcott mandarin), Citrus paradisi Macfadyen var. Ruby Red (red grapefruit), and Fortunella margarita Swingle (oval kumquat) to improve the herbal therapy against paracetamol-induced liver toxicity. UHPLC-QTOF-MS/MS profiling of the investigated samples resulted in the identification of about 40 metabolites belonging to different phytochemical classes. Phenolic compounds were the most abundant, with the total content ranked from 609.18 to 1093.26 μg gallic acid equivalent (GAE)/mL juice. The multivariate data analysis revealed that phloretin 3′,5′-di-C-glucoside, narirutin, naringin, hesperidin, 2-O-rhamnosyl-swertisin, fortunellin (acacetin-7-O-neohesperidoside), sinensetin, nobiletin, and tangeretin represented the crucial discriminatory metabolites that segregated the analyzed samples. Nevertheless, the antioxidant activity of the samples was 1135.91−2913.92 μM Trolox eq/mL juice, 718.95−3749.47 μM Trolox eq/mL juice, and 2304.74− 4390.32 μM Trolox eq/mL juice, as revealed from 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid, ferric-reducing antioxidant power, and oxygen radical absorbance capacity, respectively. The in vivo paracetamol-induced hepatotoxicity model in rats was established and assessed by measuring the levels of hepatic enzymes and antioxidant biomarkers. Interestingly, the concomitant administration of citrus juices with a toxic dose of paracetamol effectively recovered the liver injury, as confirmed by normal sections of hepatocytes. This action could be due to the interactions between the major identified metabolites (hesperidin, hesperetin, phloretin 3′,5′-di-C-glucoside, fortunellin, poncirin, nobiletin, apigenin-6,8-digalactoside, 6′,7′-dihydroxybergamottin, naringenin, and naringin) and cytochrome P450 isoforms (CYP3A4, CYP2E1, and CYP1A2), as revealed from the molecular docking study. The most promising compounds in the three docking processes were hesperidin, fortunellin, poncirin, and naringin. Finally, a desirable food−drug interaction was achieved in our research to overcome paracetamol overdose-induced hepatotoxicity.