The distribution of Substance P-like immunoreactivity in the jugular and nodose ganglia of rabbits and pigeons has been studied using immunocytochemical staining techniques. Substance P-like immunoreactivity is localized to neuronal cell bodies and processes in the jugular and nodose ganglia, and to pericellular fiber plexi in the nodose ganglia of both species. The numbers and sizes of cells which exhibited Substance P-like immunoreactivity in each ganglion were determined using quantitative morphometric techniques. The distribution of Substance P-like immunoreactivity in the rabbit and pigeon vagal sensory ganglia is characterized by several general features. In most of the ganglia, immunoreactive neurons factor into discrete types which can be distinguished from one another, and from non-immunoreactive neurons, by size. In addition, immunoreactive nodose and jugular ganglion cells, respectively, are distinguishable on the basis of size. Finally, a considerably high percentage of immunoreactive neurons is found in the jugular ganglion than in the nodose ganglion. Substance P-like immunoreactivity was also seen in pericellular fiber plexi which encircle individual neurons in the nodose ganglion of rabbits and pigeons. These plexi are composed of varicose fibers which appear to terminate as boutons on the surface of the cells which they encircle. The distribution of Substance P-like immunoreactivity within the vagal sensory ganglia is discussed with respect to the possible peripheral targets and functions of Substance P-containing vagal afferents. Our findings suggest that Substance P-containing vagal sensory neurons are involved in a variety of visceral and somatic afferent functions.