There is disagreement regarding the description of the patellofemoral ligaments (PFLs), considered by some authors as capsular thickening and by others as independent ligaments. It was hypothesised that the PFLs and retinacula are structures with different histological features. The aim of this study was to describe the stabilising structures of the patella in detail and to determine if the PFLs and retinacula are different and separable structures from a macroscopic, microscopic and imaging viewpoint. An anatomical study was performed on eight knees from five cadavers (mean age, 56.2 years; range, 35–63 years), and a histological study was conducted on specimens from nine patients having a mean age of 65 years (range 35–84 years) who had undergone surgical knee procedures. The imaging study was based on 100 MRIs (96 patients). The mean age was 46 years (range 16–88), and the study analysed the capsular-ligamentous structures. In the medial compartment, the layers and structures were as follows: superficial layer, medial retinaculum; intermediate layer, Medial Collateral Ligament (MCL), Posterior Oblique Ligament (POL) and Medial Patellofemoral Ligament (MPFL); deep layer, deep part of the MCL and joint capsule. In the lateral compartment, the layers and structures were the following: superficial layer, lateral retinaculum; intermediate layer, Lateral Collateral Ligament (LCL) and Lateral Patellofemoral Ligament (LPFL); deep layer, joint capsule. All of the knees examined presented a clearly distinguishable MPFL and LPFL separable from the capsular layer. Histological study: there was a higher density of nerve fibres in retinacula compared to ligaments (p = 0.0034) and a higher content of elastic fibres in retinacula (p < 0.0005). In imaging, there was no difference between medial and lateral retinaculum thickness (p > 0.05). In conclusion, both the lateral and medial compartment can be described using the three-layer scheme. PFLs and retinacula are separate structures both macroscopically and according to imaging analysis. The retinacula respond to their specific function with a higher nerve fibre content and higher number of elastic fibres compared to the ligaments.