All studies to date of cholinergic systems of bony fishes have been done in teleosts. To gain further insight into the evolution of the cholinergic systems of bony fishes, we have studied the brain of a chondrostean fish, the Siberian sturgeon (Acipenser baeri, Brandt), by using an antibody against choline acetyltransferase (ChAT). This study showed the presence of ChAT-immunoreactive (ChAT-ir) neurons in the preoptic region (parvocellular and magnocellular preoptic nuclei and suprachiasmatic nucleus), the periventricular and tuberal hypothalamus, the saccus vasculosus, the dorsal thalamus, and the habenula. The mesencephalic tegmentum contained ChAT-ir cells in the torus semicircularis and torus lateralis. The isthmus contained several cholinergic populations: the nucleus isthmi, the lateral nucleus of the valvula, the secondary visceral nucleus, and the dorsal tegmental nucleus. The motor neurons of the cranial nerves and the spinal motor column were strongly immunoreactive. The medial (sensory) trigeminal nucleus also contained a ChAT-ir neuronal population. The distribution of ChAT-ir neurons in the sturgeon brain showed some notable differences with that observed in teleosts, such as the absence of cholinergic cells in the telencephalon and the optic tectum. Several brain regions were richly innervated by ChAT-ir fibers, particularly the telencephalon, optic tectum, thalamus, posterior tubercle, and interpeduncular nucleus. The hypothalamo-hypophyseal tract, the tract of the saccus vasculosus, the fasciculus retroflexus, and an isthmo-mesencephalo-thalamic tract were the most conspicuous cholinergic bundles. Comparative analysis of these results suggests that teleosts have conserved most traits of the cholinergic system of the sturgeon, having acquired new cholinergic populations during evolution.