We study choosability with separation which is a constrained version of list coloring of graphs. A (k, d)-list assignment L of a graph G is a function that assigns to each vertex v a list L(v) of at least k colors and for any adjacent pair xy, the lists L(x) andThis concept is also known as choosability with separation. We prove that planar graphs without 4-cycles are (3, 1)-choosable and that planar graphs without 5-cycles and 6-cycles are (3, 1)-choosable. In addition, we give an alternative and slightly stronger proof that triangle-free planar graphs are (3, 1)-choosable.