2018
DOI: 10.1080/07350015.2018.1459302
|View full text |Cite
|
Sign up to set email alerts
|

Choosing Prior Hyperparameters: With Applications to Time-Varying Parameter Models

Abstract: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
19
0

Year Published

2019
2019
2024
2024

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 31 publications
(19 citation statements)
references
References 22 publications
0
19
0
Order By: Relevance
“…As a further robustness check and in order to highlight the relevance of estimating the hyperparameters by using the approach of Amir‐Ahmadi et al . (), we compare the IRFs from our baseline model with the ones obtained by using the fixed values in Primiceri (). Figure A.4 displays the impulse responses based on the benchmark values.…”
Section: Resultsmentioning
confidence: 99%
See 3 more Smart Citations
“…As a further robustness check and in order to highlight the relevance of estimating the hyperparameters by using the approach of Amir‐Ahmadi et al . (), we compare the IRFs from our baseline model with the ones obtained by using the fixed values in Primiceri (). Figure A.4 displays the impulse responses based on the benchmark values.…”
Section: Resultsmentioning
confidence: 99%
“…Therefore, we estimate the hyperparameters kbold-italicQ,kbold-italicS and kW jointly with all other model parameters using a fully Bayesian approach as proposed by Amir‐Ahmadi et al . (). This approach estimates the hyperparameters in a data‐based fashion and takes the surrounding uncertainty into account.…”
Section: Methodsmentioning
confidence: 97%
See 2 more Smart Citations
“…In supervised metamodeling, hyperparameters are fully determined by prior experience and learning (e.g., Amir-Ahmadi et al, 2018), whereas in semi-supervised systems, the initial hyperparameters are partially given, but provisional. Additional processing is required to tune and optimize them.…”
Section: Dimensions Of Metamodelingmentioning
confidence: 99%