Psoriasis is a common non-communicable chronic immune-mediated skin disease, affecting approximately 125 million people in the world. Its pathogenesis results from a combination of genetic and environmental factors. The pathogenesis of psoriasis seems to be driven by the interaction between innate immune cells, adaptive immune cells and keratinocytes, in a process mediated by cytokines (including interleukins (IL)-6, IL-17 and IL-22, interferon and tumor necrosis factor) and other signaling molecules. This leads to an inflammatory process with increased proliferation of epidermal cells, neo-angiogenesis and infiltration of dendritic cells in the skin. Dysfunctional de novo glucocorticoid synthesis in psoriatic keratinocytes and the skin microbiome have also been suggested as mediators in the pathogenesis of this disease. To understand psoriasis, it is essential to comprehend the processes underlying the skin immunity and neuroendocrinology. This review paper focuses on the skin as a neuroendocrine organ and summarizes what is known about the skin immune system, the brain–skin connection and the role played by the serotonergic system in skin. Subsequently, the alterations of neuroimmune processes and of the serotonergic system in psoriatic skin are discussed, as well as, briefly, the genetic basis of psoriasis.