The purpose of this study was to evaluate the interocular differences in choroidal vasculature, choriocapillaris perfusion, and retinal microvascular network, and to explore their associations with interocular asymmetry in axial lengths (ALs) in children with anisomyopia.
METHODS.Refractive error, AL, and other biometric parameters were measured in 70 children with anisomyopia. Using optical coherence tomography (OCT) and OCTangiography, we measured the submacular choroidal thickness (ChT), total choroidal area (TCA), luminal area (LA), stromal area (SA), choroidal vascularity index (CVI), choriocapillaris flow deficit (CcFD), retinal vessel density (VD), and foveal avascular zone (FAZ) area.
RESULTS.The mean interocular differences in spherical equivalent refraction and AL were −2.26 ± 0.94 diopters and 0.95 ± 0.46 mm, respectively. Submacular ChT, TCA, LA, SA, and CVI were all significantly lower in the more myopic (longer AL) eyes than in the less myopic (shorter AL) fellow eyes. In eyes with longer ALs, both the CcFD and FAZ areas were significantly greater, whereas the superficial and deep retinal VDs were significantly less. After adjusting for corneal power and intraocular pressure, interocular differences in LA (β = −0.774), SA (β = −0.991), and CcFD (β = 0.040) were significantly associated with interocular asymmetry in AL (all P < 0.05).
CONCLUSIONS.In pediatric anisomyopes, eyes with longer ALs tended to have lower choroidal vascularity and choriocapillaris perfusion than the contralateral eyes with shorter ALs. Longitudinal investigations would be useful follow-ups to test for a causal role of choroidal circulation in human myopia.