Background: Choroidal circulation hemodynamics in eyes with ocular blunt trauma has not been quantitatively examined yet. We quantitatively examined changes in choroidal blood flow velocity and thickness at the lesion site using laser speckle flowgraphy (LSFG) and enhanced depth imaging optical coherence tomography (EDI-OCT) in a patient with chorioretinopathy associated with ocular blunt trauma. Case presentation: A 13-year-old boy developed a chorioretinal lesion with pigmentation extending from the optic disc to the superotemporal side in the right eye after ocular blunt trauma. The patient's best-corrected visual acuity (BCVA) was 0.2 in the right eye. Indocyanine green angiography showed hypofluorescence from the initial phase, with a decrease of mean blur rate (MBR) on LSFG color map, which corresponded to the chorioretinal lesion. The BCVA and foveal outer retinal morphologic abnormality spontaneously improved during follow-up. MBR and choroidal thickness increased by 23-31% and 13-17 μm at the lesion site and by 11-22% and 33-42 μm at the fovea, respectively, during the 6-month follow-up period after baseline measurements in the affected eye. In contrast, these parameters showed little or no changes at the normal retinal site in the affected eye and the fovea in the fellow eye. Conclusions: Current data revealed that both blood flow velocity and thickness in the choroid at the lesion site decreased in the acute stage and subsequently increased together with improvements in visual function and outer retinal morphology. These results suggest that LSFG and EDI-OCT may be useful indices that can noninvasively evaluate activity of choroidal involvement in ocular blunt trauma-associated chorioretinopathy.