This note is about certain locally complete families of Calabi-Yau varieties constructed by Cynk and Hulek, and certain varieties constructed by Schreieder. We prove that the cycle class map on the Chow ring of powers of these varieties admits a section, and that these varieties admit a multiplicative self-dual Chow-Künneth decomposition. As a consequence of both results, we prove that the subring of the Chow ring generated by divisors, Chern classes, and intersections of two cycles of positive codimension injects into cohomology, via the cycle class map. We also prove that the small diagonal of Schreieder surfaces admits a decomposition similar to that of K3 surfaces. As a by-product of our main result, we verify a conjecture of Voisin concerning zero-cycles on the self-product of Cynk-Hulek Calabi-Yau varieties, and in the odd-dimensional case we verify a conjecture of Voevodsky concerning smash-equivalence. Finally, in positive characteristic, we show that the supersingular Cynk-Hulek Calabi-Yau varieties provide examples of Calabi-Yau varieties with "degenerate" motive.2 ), the Hodge diamond