Enhancers are regulatory DNA sequences that activate transcription over long distances. Recent studies revealed a widespread role of distant activation in eukaryotic gene regulation and in development of various human diseases, including cancer. Genomic and gene-targeted studies of enhancer action revealed novel mechanisms of transcriptional activation over a distance. They include formation of stable, inactive DNA-protein complexes at the enhancer and target promoter before activation, facilitated distant communication by looping of the spacer chromatin-covered DNA, and promoter activation by mechanisms that are different from classic recruiting. These studies suggest the similarity between the looping mechanisms involved in enhancer action on DNA in bacteria and in chromatin of higher organisms. E nhancers (Es) are short (20-to 400-bp) DNA sequences that can activate transcription from target promoters (P) in trans and over various distances (more than 100 kb) (7). Enhancers operate in pro-and eukaryotes; in the majority of cases, action of Es involves direct E-P interaction through proteins bound at the E and P, accompanied by formation of an intervening chromatin loop (7,24,38). Recent genomic studies using various versions of the 3C approach revealed widespread use of gene regulation by enhancers (see reference 32 for a review). In parallel, genomic studies identified specific signatures (histone modifications and associated proteins) of enhancers that greatly facilitated analysis of the databases (32).At the same time, understanding of mechanistic aspects of enhancer action trails behind, primarily due to the lack of in vitro systems faithfully recapitulating distant activation. The enhancer field remains driven by the concept of recruiting that was proposed to explain short-distance activation of transcription in prokaryotes (Fig. 1A) (44). During recruiting, an activator protein increases the local concentration of another protein/protein complex (e.g., RNA polymerase [RNAP]) in the vicinity of its binding site. The local increase of protein concentration results in relief of a step limiting the rate of initiation (usually binding of RNAP to a promoter nearby) and induces transcription. During distant action, even if a protein complex was recruited to the enhancer, its concentration at the target would not necessarily be increased because E/P do not typically colocalize. Furthermore, enhancers typically activate preformed complexes already recruited to DNA ( Fig. 1B; also see below). Thus, the concept of recruiting cannot explain some principal aspects of enhancer action; instead, the presence of preformed enhancer targets raises questions about efficient E-P communication and activation of transcription (Fig. 1B). In this review, we focus primarily on mechanistic aspects of enhancer action; other recent studies were covered in several excellent reviews (7,24,32,38).
ENHANCER ACTION ON DNAIn prokaryotes, there are two types of transcriptional enhancers using tracking and looping mechanisms for enhancer-...