This paper describes the identification of a new class of extracellular bacterial proteins, typified by PopA1 and its derivative PopA3, which act as specific hypersensitive response (HR) elicitors. These two heat‐stable proteins, with HR‐like elicitor activities on tobacco (non‐host plant) but without activity on tomato (host plant), have been characterized from the supernatant of the plant pathogenic bacterium Pseudomonas solanacearum strain GMI1000. These two proteins induced the same pattern of response on Petunia, as a function of the genotypes tested. popA, the structural gene for PopA1, maps outside of the hrp gene cluster but belongs to the hrp regulon. The amino acid sequence of PopA1 does not show homology to any characterized proteins. Its secretion is dependent on hrp genes and is followed by stepwise removal of the 93 amino‐terminal amino acids, producing the protein PopA3. Petunia lines responsive to PopA3 and its precursors were resistant to infection by strain GMI1000, whereas non‐responsive lines were sensitive, suggesting that popA could be an avirulence gene. A popA mutant remained fully pathogenic on sensitive plants, indicating that this gene is not essential for pathogenicity. While lacking PopA1, this mutant, which remained avirulent on tobacco and on resistant Petunia lines, still produced additional extracellular necrogenic compounds. On the basis of both their structural features and the biological properties of the popA mutant, PopA1 and PopA3 clearly differ from hairpins characterized in other plant pathogenic bacteria.