Reactivity of transition metal complexes containing the redox-active gallylene (dpp-bian)Ga ligand (dpp-bian = 1,2-bis [(2,6-diisopropylphenyl)imino]acenaphthene) toward isocyanide, isocyanate, isothiocyanate, and ketene substrates is described. The reaction of [(dpp-bian)GaCr(CO) 5 ] (1) with tBuNC results in a dative complex [(dpp-bian)Ga(CNtBu)Cr(CO) 5 ] (2), while compound [(dppbian)GaCr(CO) 5 ] 2 [Na(THF) 2 ] 2 (3) reacts with tBuNC to give the coordination polymer [(dpp-bian)GaCr(CO) 5 ][Na(CNtBu)(THF)] n (5). Treatment of [(dppbian)GaCr(CO) 5 ] 2 [Na(THF) 2 ] 2 with an excess of PhNCO results in trimerization of the latter and formation of complex [(dpp-bian)GaCr(CO) 5 ][Na-(PhNCO) 3 (Et 2 O) (DME)] (4). [(dpp-bian)GaFeCp(CO) 2 ] (7) treated with Ph 2 CCO or PhNCS results in cycloaddition products [(dpp-bian)(Ph 2 CCO)-GaFeCp(CO) 2 ] ( 8) and [(dpp-bian)(PhNCS)GaFeCp(CO) 2 ] (9). The formation of 2 and 9 was found to be reversible, which offers a means for facile regulation of transition metal center reactivity and cooperative substrate activation. New compounds were characterized by EPR (2), NMR (4, 8, and 9), and IR spectroscopy (2, 4, 5, 8, and 9). The molecular structures of 2, 4, 5, 8, and 9 were established by single-crystal X-ray diffraction analysis. Electronic structures of the compounds have been examined by DFT calculations.