Dearomatization reactions involving radical cyclizations can facilitate the synthesis of complex polycyclic systems that find applications in medicinal chemistry and natural product synthesis. Here we employ redox-neutral photocatalysis to affect a radical spirocyclization that transforms biaryls into spirocyclic cyclohexadienones under mild reaction conditions. In a departure from previously reported methods, our work demonstrates the polarity mismatched addition of a nucleophilic radical to an electron rich arene, and allows the regioselective synthesis of 2,4-or 2,5-cyclohexadienones with broad functional group tolerance. By transforming biaryls into spirocycles, our methodology accesses underexplored three-dimensional chemical space, and provides an efficient means of creating quaternary spirocenters that we apply to the first synthesis of the cytotoxic plant metabolite denobilone A.