In this paper, we provide a cytogenetic analysis of Eleutherodactylus guentheri, E. parvus and E. binotatus. All of the species had a diploid chromosomal number of 2n = 22. The karyotypes of E. guentheri and E. parvus were very similar and differed only slightly in the morphology of pair 2. These two species also had an NOR-bearing secondary constriction on the long arms of pair 6. The karyotype of E. binotatus differed from those of E. guentheri and E. parvus in the morphology and size of the chromosomes, in the number of chromosomal arms, in the NOR location (detected on the short arms of pair 1), and in the pattern of heterochromatin. These results reinforce the differences between E. guentheri and E. binotatus and support the existence of two species group. Five individuals of E. binotatus showed morphs for pairs 2 and 3. These morphs probably arose from the translocation of a segment from one chromosome of pair 3 to a homologue of pair 2. In addition, some mitotic metaphases of E. binotatus showed spontaneous chromosomal breaks which suggested that there were sites of fragility. Meiotic diakinesis showed multiple chromosomal rings, indicating the occurrence of multiple translocations, as previously reported by other investigators. These data suggest that, in addition to fission and fusion, other chromosomal rearrangements were probably involved in the differentiation of the karyotypes of these species of Eleutherodactylus, especially E. binotatus.