A cladistic analysis of genome assemblies (syntenic associations) for eutherian mammals against two distant outgroup species--opossum and chicken--permitted a refinement of the 46-chromosome karyotype formerly inferred in the ancestral eutherian. We show that two intact chromosome pairs (corresponding to human chromosomes 13 and 18) and three conserved chromosome segments (10q, 19p and 8q in the human karyotype) are probably symplesiomorphic for Eutheria because they are also present as unaltered orthologues in one or both outgroups. Seven additional syntenies (4q/8p/4pq, 3p/21, 14/15, 10p/12pq/22qt, 19q/16q, 16p/7a and 12qt/22q), each involving human chromosomal segments that in various combinations correspond to complete chromosomes in the ancestral eutherian karyotype, are also present in one or both outgroup taxa and thus are probable symplesiomorphies for Eutheria. Interestingly, several of the symplesiomorphic characters identified in chicken and/or opossum are present in more distant outgroups such as pufferfish and zebrafish (for example 3p/21, 14/15, 19q/16q and 16p/7a), suggesting their retention since vertebrate common ancestry approximately 450 million years ago. However, eight intact pairs (corresponding to human chromosomes 1, 5, 6, 9, 11, 17, 20 and the X) and three chromosome segments (7b, 2p-q13 and 2q13-qter) are derived characters potentially consistent with eutherian monophyly. Our analyses clarify the distinction between shared-ancestral and shared-derived homology in the eutherian ancestral karyotype.