Viral nervous necrosis disease (VNN), caused by nervous necrosis virus (NNV), is one major threat to mariculture. Identifying loci and understanding the mechanisms associated with resistance to VNN are important in selective breeding programs. We performed a genome-wide association study (GWAS) using genotyping-by-sequencing (GBS) to study the genomic architecture of resistance to NNV infection in Asian seabass. We genotyped 986 individuals from 43 families produced by 15 founders with 44498 bi-allelic genetic variants using GBS. The GWAS identified three genome-wide significant loci on chromosomes 16, 19, and 20, respectively, and six suggestive loci on chromosomes 1, 8, 14, 15, 21, and 24, respectively, associated with resistance to NNV infection measured as binary and quantitative traits. Using the 500 most significant markers in combination with a training population of 800 samples could reach a genomic prediction accuracy of 0.7. Candidate genes significantly associated with resistance to NNV, including lysine-specific demethylase 2A, beta-defensin 1, and cystatin-B, which play important roles in immune responses against virus infection, were identified. Almost all the candidate genes were differentially expressed in different tissues against NNV infection. The significant genetic variants can be used in genomic selection and help understand the mechanism of resistance to VNN. Future studies should use populations of large effective size and whole genome resequencing to identify more useful genetic variants.