Bovine κ-caseinoglycomacropeptide (GMP) is a highly modified peptide from kappa-casein produced during the cheese making process. The chemical nature of GMP makes analysis by traditional proteomic approaches difficult, as the peptide bears a strong net negative charge and a variety of post-translational modifications. In this work, we describe the use of electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) for the top-down analysis of GMP. The method allows the simultaneous detection of different GMP forms that result from the combination of amino acid genetic variations and post-translational modifications, specifically phosphorylation and O-glycosylation. The different GMP forms were identified by high resolution mass spectrometry in both negative and positive mode and confirmation was achieved by tandem MS. The results showed the predominance of two genetic variants of GMP that occur as either mono or bi-phosphorylated species. Additionally, these four forms can be modified with up to two o-glycans generally sialylated. The results demonstrate the presence of glycosylated, bi-phosphorylated forms of GMP, never describe before.