Anaplastic large-cell lymphoma (ALCL) comprises approximately 25% of all non-Hodgkin lymphomas (NHL) in children and young adults, and up to 15% of high-grade NHL in older patients. Over 50% of these tumours carry the translocation t(2;5)(p23;q35). The result of this translocation is the fusion of the nucleophosmin (NPM) gene to the anaplastic lymphoma kinase (ALK) gene. The resulting hybrid protein contains the ALK catalytic domain that consequently confers transforming potential, which contributes to the pathogenesis of ALCL. To further analyse the transforming activity in an animal model, a cDNA encoding the protein product, NPM-ALK, was inserted into the retrovirus vector pLXSN and transduced into mouse bone marrow progenitors. These cells were subsequently used in a bone marrow transplant with the aim of reconstituting the haematopoietic compartments of lethally irradiated recipients. IL-9 transgenic mice were chosen as the animal model system, because dysregulated expression of the IL-9 gene in transgenic mice results in the sporadic development of spontaneous thymic lymphomas. Moreover, IL-9 is known to be expressed in cases of human ALCL. We used 15 IL-9 transgenic mice and eight corresponding wild-type mice (FVB/N) and transplanted them with NPM/ALK infected bone marrow cells. Eight IL-9 transgenic mice, serving as a control group, received pLXSN (vector only)-infected marrow. Reconstituted mice developed NPM-ALK-positive lymphomas, including lymphoblastic lymphomas of Tcell type (T-LB), mature and immature plasmacytoma (PC), and plasmoblastic/anaplastic diffuse large-B-cell lymphoma after about 19-20 weeks. The combined overexpression of NPM-ALK and IL-9 led to the transformation of murine lymphoid cells with accelerated and enhanced development of T-LB in 46% of the mice, which only very rarely occurs in IL-9 transgenic mice only. Of the 15 animals, five (33%) developed plasmacytic/plasmoblastic neoplasms, of which the most aggressive tumours share many features with anaplastic/plasmoblastic diffuse large-B-cell lymphoma on the basis of morphology, a characteristic growth pattern and ALK expression.