2021
DOI: 10.22541/au.162518309.92500415/v1
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Chromosome-scale assembly and whole-genome sequencing of 266 giant panda roundworms provide insights into their evolution, adaptation and potential drug targets

Abstract: Helminth diseases have long been a threat to the health of humans and animals. Roundworms are important organisms for studying parasitic mechanisms, disease transmission and prevention. The study of parasites in the giant panda is of importance for understanding how roundworms adapt to the host. Here, we report a high-quality chromosome-scale genome of Baylisascaris schroederi with a genome size of 253.60 Mb and 19,262 predicted protein-coding genes. We found that gene families related to epidermal chitin synt… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2022
2022
2022
2022

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 49 publications
0
1
0
Order By: Relevance
“…The pairwise sequentially Markovian coalescent (PSMC) method [35] was used to evaluate the dynamic change of effective population size (Ne) of each population. We used 0.17 year per generation (g) and a mutation rate (μ) of 9 × 10-9 per generation per site to rescale the time to year [36,37]. More recent (within 1000 years) changes in effective population size of each population and separation time between different populations were further estimated by using the multiple sequentially Markovian coalescent (MSMC2) [38], which can much compensate for results from PSMC.…”
Section: Estimates Of the Effective Population Size And Divergence Timementioning
confidence: 99%
“…The pairwise sequentially Markovian coalescent (PSMC) method [35] was used to evaluate the dynamic change of effective population size (Ne) of each population. We used 0.17 year per generation (g) and a mutation rate (μ) of 9 × 10-9 per generation per site to rescale the time to year [36,37]. More recent (within 1000 years) changes in effective population size of each population and separation time between different populations were further estimated by using the multiple sequentially Markovian coalescent (MSMC2) [38], which can much compensate for results from PSMC.…”
Section: Estimates Of the Effective Population Size And Divergence Timementioning
confidence: 99%