The hymenopteran subfamily Charipinae (Cynipoidea: Figitidae) consist of a group of parasitic wasps that are exclusive hyperparasitoids of Hemipteran. The species boundaries in Charipinae have historically been unclear. While diagnostic morphological features have been established for the stepwise separation of species, it is recommended to confirm those limits using molecular data. Here, we focus on the genera Alloxysta Förster, 1869 and Phaenoglyphis Förster, 1869, both of which contain species that are hyperparasitoids of aphids. We sequenced three genes (mitochondrial COI and 16S rDNA, and nuclear ITS2 rDNA) from specimens that were identified as belonging to five species: Alloxysta brevis (Thomson, 1862), A. castanea (Hartig, 1841), A. ramulifera (Thomson, 1862), A. victrix (Westwood, 1833), and Phaenoglyphis villosa (Hartig, 1841). The phylogeny resulting from concatenating these genes supported the species status of the five morphologically identified taxa, with P. villosa nested within Alloxysta. Our study thus indicates that these molecular markers can successfully distinguish charipine species, and also indicates that the genera Alloxysta and Phaenoglyphis may be more closely related than previously hypothesized. We also present the first estimates of genetic distances for these species. Future studies that include more species, loci, and/or genomic data will complement our research and help determine species relationships within the Charipinae subfamily.