IL-1 is a key inflammatory and immune mediator in many diseases, including dry-eye disease, and its inhibition is clinically efficacious in rheumatoid arthritis and cryopyrin-associated periodic syndromes. To treat ocular surface disease with a topical biotherapeutic, the uniqueness of the site necessitates consideration of the agent's size, target location, binding kinetics, and thermal stability. Here we chimerized two IL-1 receptor ligands, IL-1β and IL-1Ra, to create an optimized receptor antagonist, EBI-005, for topical ocular administration. EBI-005 binds its target, IL-1R1, 85-fold more tightly than IL-1Ra, and this increase translates to an ∼100-fold increase in potency in vivo. EBI-005 preserves the affinity bias of IL-1Ra for IL-1R1 over the decoy receptor (IL-1R2), and, surprisingly, is also more thermally stable than either parental molecule. This rationally designed antagonist represents a unique approach to therapeutic design that can potentially be exploited for other β-trefoil family proteins in the IL-1 and FGF families.T he IL-1 cytokines (IL-1α and IL-1β) are master mediators of inflammatory responses (1). IL-1β also regulates immune function through its role in T helper 17 (Th17) cell differentiation and maintenance (2, 3). IL-1 action has been implicated in numerous human diseases, including rheumatoid arthritis, MuckleWells syndrome, gout, type 2 diabetes, and stroke (4). Several natural mechanisms directly oppose the actions of IL-1, including a soluble and cell surface decoy receptor (IL-1R2), a natural antagonist (IL-1Ra), and a soluble signaling receptor (IL-1R1) (5). Therapeutics that block IL-1 based on these mechanisms have been developed (6-8).Recently, a nonoptimized formulation of anakinra (methionyl-IL-1Ra; Kineret) was shown to provide clinical benefit in dry-eye disease (DED) (9). Moderate to severe DED is a chronic inflammatory condition of the corneal surface that results in pain, discomfort, and epitheliopathy (as measured by fluorescein staining). Inability to maintain a proper tear film over the cornea (owing to a variety of etiologies) results in desiccating stress, which drives an inflammatory cascade (10, 11). IL-1 plays a central role in the initiation and maintenance of this cascade, as well as in the pain mediated by the corneal neural plexus. IL-1α and IL-1β protein are elevated in the lacrimal gland, tears, and the ocular surface in all forms of dry-eye disease (12), and their mRNA is increased in both humans and in rodent disease models (13,14). Genetic ablation of IL-1R1, the primary receptor for IL-1α and IL-1β, can block the development of corneal staining in a Sjögren syndrome corneal epitheliopathy model (15), and topically administered anakinra can improve surface epithliopathy in a mouse dry-eye model (14). IL-1β is essential for Th17 cell differentiation and maintenance, and Th17 cells are likely the main effector cells that induce epithelial damage (2, 3). Genetic and pharmacologic studies have shown that IL-1β mediates, and IL-1Ra blocks, normal, inflamm...