The prevalence of preeclampsia and obesity have increased. While obesity is a major risk factor for preeclampsia, the mechanisms linking these morbidities are poorly understood. Circulating leptin levels increase in proportion to fat mass. Infusion of this adipokine elicits hypertension in non-pregnant rats, but less is known about how hyperleptinemia impacts blood pressure during placental ischemia, an initiating event in the pathophysiology of hypertension in preeclampsia. We tested the hypothesis that hyperleptinemia during reduced uterine perfusion pressure (RUPP) exaggerates placental ischemia-induced hypertension. On gestational day (GD) 14, Sprague-Dawley rats were implanted with osmotic mini-pumps delivering recombinant rat leptin (1 mg/kg per min, i.v.) or vehicle concurrently with the RUPP procedure to induce placental ischemia or Sham. On GD 19, plasma leptin was elevated in Sham+Leptin and RUPP+Leptin. Leptin infusion did not significantly impact mean arterial pressure (MAP) in Sham. MAP was increased in RUPP+Vehicle vs. Sham+Vehicle. In contrast to our hypothesis, placental ischemia-induced hypertension was attenuated by leptin infusion. To examine potential mechanisms for attenuation of RUPP-induced hypertension during hyperleptinemia, endothelial-dependent vasorelaxation to acetylcholine was similar between Sham and RUPP; however, endothelial-independent vasorelaxation to the nitric oxide (NO)-donor, sodium nitroprusside, was increased in Sham and RUPP. These findings suggest that NO/cyclic guanosine monophosphate (cGMP) signaling was increased in the presence of hyperleptinemia. Plasma cGMP was elevated in Sham and RUPP hyperleptinemic groups compared to vehicle groups but plasma and vascular NO metabolites were reduced. These data suggest that hyperleptinemia during placental ischemia attenuates hypertension by compensatory increases in NO/cGMP signaling.