Glucocorticoids (GCs) play essential roles in physiology, development, and behavior that are mediated largely by the glucocorticoid receptor (GR). Although the GR has been intensively studied in mammals, very little is known about the GR in nonmammalian tetrapods. We analyzed the distribution and GC regulation of GR in the brain of the frog Xenopus laevis by immunohistochemistry. GR-immunoreactive (GR-ir) cells were widely distributed, with the highest densities in the medial pallium (mp; homolog of the mammalian hippocampus), accumbens, anterior preoptic area (POA; homolog of the mammalian paraventricular nucleus), Purkinje cell layer of the cerebellum, and rostral anterior pituitary gland (location of corticotropes). Lower but distinct GR-ir was observed in the internal granule cell layer of the olfactory bulbs, dorsal and lateral pallium, striatum, various subfields of the amygdala, bed nucleus of the stria terminalis (BNST), optic tectum, various tegmental nuclei, locus coeruleus, raphe nuclei, reticular nuclei, and the nuclei of the trigeminal motor nerves. Treatment with corticosterone (CORT) for 4 days significantly decreased GR-ir in the POA, mp, medial amygdala (MeA), BNST, and rostral pars distalis. Treatment with the corticosteroid synthesis inhibitor metyrapone (MTP) also significantly reduced GR-ir in the POA, mp, MeA and BNST, but not in the rostral pars distalis. Replacement with a low dose of CORT in MTP-treated animals reversed these effects in brain. Thus, chronic increase or decrease in circulating corticosteroids reduces GR-ir in regions of the frog brain. Our results show that the central distribution of GR-ir and regulation by corticosteroids are highly conserved among vertebrates.