demiological studies suggest that maternal undernutrition predisposes the offspring to development of energy balance metabolic pathologies in adulthood. Using a model of a prenatal maternal 70% foodrestricted diet (FR30) in rats, we evaluated peripheral parameters involved in nutritional regulation, as well as the hypothalamic appetite-regulatory system, in nonfasted and 48-h-fasted adult offspring. Despite comparable glycemia in both groups, mild glucose intolerance, with a defect in glucose-induced insulin secretion, was observed in FR30 animals. They also exhibited hyperleptinemia, despite similar visible fat deposits. Using semiquantitative RT-PCR, we observed no basal difference of hypothalamic proopiomelanocortin (POMC) and neuropeptide Y (NPY) gene expression, but a decrease of the OB-Rb and an increase of insulin receptor mRNA levels, in FR30 animals. These animals also exhibited basal hypercorticosteronemia and a blunted increase of corticosterone in fasted compared with control animals. After fasting, FR30 animals showed no marked reduction of POMC mRNA levels or intensity of -endorphin-immunoreactive fiber projections. By contrast, NPY gene expression and immunoreactive fiber intensity increased. FR30 rats also displayed subtle alterations of food intake: body weight-related food intake was higher and light-dark phase rhythm and refeeding time course were modified after fasting. At rest, in the morning, hyperinsulinemia and a striking increase in the number of c-Fos-containing cells in the arcuate nucleus were observed. About 30% of the c-Fos-expressing cells were POMC neurons. Our data suggest that maternal undernutrition differently programs the long-term appetite-regulatory system of offspring, especially the response of POMC neurons to energy status and food intake rhythm. maternal undernutrition; appetite programming; hypothalamus; arcuate nucleus; feeding rhythm IN ADDITION TO LIFESTYLE and dietary factors, increasing evidence suggests that the origin of some metabolic disorders that manifest in adult life may be traced to development. Indeed, epidemiological studies have shown that adverse environmental factors leading to intrauterine growth retardation (IUGR) and low birth weight may predispose individuals to later onset of energy balance metabolic pathology development (9,17,18,20,29). This has led to the concept of the developmental origin of adult diseases, also called "fetal programming," or the Barker hypothesis (4). As illustrated by the Dutch Famine Study, offspring of women exposed to famine during early pregnancy displayed an increased risk of adiposity and glucose intolerance, as well as hypertension, later in life (41).To obtain insights into the underlying mechanisms, numerous animal models, including maternal undernutrition, have been developed to promote intrauterine fetal programming (47,56). These studies confirmed that impaired fetal development has long-term metabolic consequences, sensitizing the offspring to hyperphagia and obesity, particularly when they are fed a hyperca...