HIV infection has multi-system adverse effects in children, including on the growing skeleton. We aimed to determine the association between chronic HIV infection and bone architecture (density, size, strength) in peripubertal children. We conducted a cross-sectional study of children aged 8 to 16 years with HIV (CWH) on antiretroviral therapy (ART) and children without HIV (CWOH) recruited from schools and frequency-matched for age strata and sex. Outcomes, measured by tibial peripheral quantitative computed tomography (pQCT), included 4% trabecular and 38% cortical volumetric bone mineral density (vBMD), 4% and 38% cross-sectional area (CSA), and 38% stress-strain index (SSI). Multivariable linear regression tested associations between HIV status and outcomes, stratified by sex and puberty (Tanner 1-2 versus 3-5), adjusting for age, height, fat mass, physical activity, and socioeconomic and orphanhood statuses. We recruited 303 CWH and 306 CWOH; 50% were female. Although CWH were similar in age to CWOH (overall mean AE SD 12.4 AE 2.5 years), more were prepubertal (ie, Tanner 1; 41% versus 23%). Median age at ART initiation was 4 (IQR 2-7) years, whereas median ART duration was 8 (IQR 6-10) years. CWH were more often stunted (height-for-age Z-score <À2) than those without HIV (33% versus 7%). Both male and female CWH in later puberty had lower trabecular vBMD, CSA (4% and 38%), and SSI than those without HIV, whereas cortical density was similar. Adjustment explained some of these differences; however, deficits in bone size persisted in CWH in later puberty (HIV*puberty interaction p = 0.035 [males; 4% CSA] and p = 0.029 [females; 38% CSA]). Similarly, puberty further worsened the inverse association between HIV and bone strength (SSI) in both males (interaction p = 0.008) and females (interaction p = 0.004). Despite long-term ART, we identified deficits in predicted bone strength in those living with HIV, which were more overt in the later stages of puberty. This is concerning, as this may translate to higher fracture risk later in life.