Neuropathic pain is a chronic pain that results from lesion or dysfunction of the nervous system. Depression and cognitive decline are often coupled to chronic pain, suggesting the involvement of cortical areas associated with higher cognitive functions. We investigated layer 2/3 pyramidal neurons in acute slices of the contralateral medial prefrontal cortex (mPFC) in the rat spared nerve injury (SNI) model of neuropathic pain and found morphological and functional differences between the mPFC of SNI and sham-operated animals. Basal, but not apical, dendrites of neurons from SNI rats are longer and have more branches than their counterparts in sham-operated animals; spine density is also selectively increased in basal dendrites of neurons from SNI rats; the morphological changes are accompanied by increased contribution to synaptic currents of the NMDA component. Interestingly, the NMDA/AMPA ratio of the synaptic current elicited in mPFC neurons by afferent fiber stimulation shows linear correlation with the rats' tactile threshold in the injured (but not in the contralateral) paw. Our results not only provide evidence that neuropathic pain leads to rearrangement of the mPFC, which may help defining the cellular basis for cognitive impairments associated with chronic pain, but also show pain-associated morphological changes in the cortex at single neuron level.T he prefrontal cortex (PFC) is associated with high-order cognitive and emotional functions including attention, decision making, goal-directed behavior, and working memory (1, 2). In humans, different subregions of the PFC have a role in acute pain; the medial prefrontal cortex (mPFC) was found to be involved in signaling the unpleasantness of pain (3); the anterior cingulate cortex mediates the affective component of pain responses (4) and the placebo effect (5); and anticipation of pain is positively correlated with activity in both the anterior cingulate and mPFC (6). Lending support to the hypothesis that chronic pain involves cortical reorganization, functional MRI (fMRI) studies in patients with complex region pain syndrome type I (CRPS-I) and back pain have shown that the patients' real-time rating of perceived intensity of spontaneous pain is associated with novel activity in mPFC (7, 8) when compared with activity patterns that correlate with rating of acute pain stimuli. Additionally, studies in humans with CRPS-I and chronic back pain demonstrate impaired performance on emotional decisionmaking tasks such as the Iowa Gambling Task (9), which implies involvement of the mPFC. Indeed, the performance of CRPS-I patients resembles that of patients with frontal cortex lesions. In patients with chronic back pain, the extent of activation of the mPFC during spontaneous pain and the extent of emotional, cognitive impairment correlate with the intensity of the pain and the duration of the condition (7). Finally, magnetic resonance studies show that chronic pain is associated with decreased gray matter density in various PFC regions (10, 11). Thus, the e...