Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Purpose To address the prevalence and risk factors of postoperative chronic opioid dependence, focusing on the development of a predictive scoring system to identify high-risk populations. Methods We analyzed data from the Taiwan Health Insurance Research Database spanning January 2016 to December 2018, encompassing adults undergoing major elective surgeries with general anesthesia. Patient demographics, surgical details, comorbidities, and preoperative medication use were scrutinized. Wu and Zhang’s scores, a predictive system, were developed through a stepwise multivariate model, incorporating factors significantly linked to chronic opioid dependence. Internal validation was executed using bootstrap sampling. Results Among 111,069 patients, 1.6% developed chronic opioid dependence postoperatively. Significant risk factors included age, gender, surgical type, anesthesia duration, preoperative opioid use, and comorbidities. Wu and Zhang’s scores demonstrated good predictive accuracy (AUC=0.83), with risk categories (low, moderate, high) showing varying susceptibility (0.7%, 1.4%, 3.5%, respectively). Internal validation confirmed the model’s stability and potential applicability to external populations. Conclusion This study provides a comprehensive understanding of postoperative chronic opioid dependence and introduces an effective predictive scoring system. The identified risk factors and risk stratification allow for early detection and targeted interventions, aligning with the broader initiative to enhance patient outcomes, minimize societal burdens, and contribute to the nuanced management of postoperative pain.
Purpose To address the prevalence and risk factors of postoperative chronic opioid dependence, focusing on the development of a predictive scoring system to identify high-risk populations. Methods We analyzed data from the Taiwan Health Insurance Research Database spanning January 2016 to December 2018, encompassing adults undergoing major elective surgeries with general anesthesia. Patient demographics, surgical details, comorbidities, and preoperative medication use were scrutinized. Wu and Zhang’s scores, a predictive system, were developed through a stepwise multivariate model, incorporating factors significantly linked to chronic opioid dependence. Internal validation was executed using bootstrap sampling. Results Among 111,069 patients, 1.6% developed chronic opioid dependence postoperatively. Significant risk factors included age, gender, surgical type, anesthesia duration, preoperative opioid use, and comorbidities. Wu and Zhang’s scores demonstrated good predictive accuracy (AUC=0.83), with risk categories (low, moderate, high) showing varying susceptibility (0.7%, 1.4%, 3.5%, respectively). Internal validation confirmed the model’s stability and potential applicability to external populations. Conclusion This study provides a comprehensive understanding of postoperative chronic opioid dependence and introduces an effective predictive scoring system. The identified risk factors and risk stratification allow for early detection and targeted interventions, aligning with the broader initiative to enhance patient outcomes, minimize societal burdens, and contribute to the nuanced management of postoperative pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.