Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Medical modulation of sex hormone levels is a cornerstone of treatment for many conditions that impact well-being, including cancer, fertility/infertility, gender dysphoria, and chronic metabolic diseases such as diabetes and obesity. The microbial residents of the intestine, known as the microbiota, interact with sex hormones in the intestine, and there is correlative evidence that this interaction is bidirectional. Based on these published findings, we hypothesized that transgender individuals receiving exogenous testosterone as part of their gender-affirming medical treatment might undergo changes in their intestinal microbiome. To test this, we collected 26 stool samples from nine individuals before and up to 8 months after initiation of treatment with exogenous testosterone and subjected these samples to metagenomic analysis. While no species were significantly associated with the duration of testosterone therapy, pathways that generate glutamate increased in abundance, while those that consume glutamate decreased. Glutamate is a precursor of arginine, and testosterone is known to increase levels of arginine and its metabolites in the plasma. We hypothesize that testosterone increases the uptake of glutamate by enterocytes, thus decreasing access of the microbiota to this amino acid. While this pilot study establishes the impact of testosterone therapy on the intestinal microbiome, a more comprehensive study is necessary to establish the impact of testosterone-driven metagenomic shifts on the stool metatranscriptome, the stool metabolome, and the plasma metabolome. IMPORTANCE The human intestine is inhabited by a large community of microbes known as the microbiome. Members of the microbiome consume the diet along with their human host. Thus, the metabolomes of the host and microbe are intricately linked. Testosterone alters the plasma metabolome. In particular, plasma levels of arginine and its metabolites and testosterone are positively correlated. To investigate the impact of exogenous testosterone on the microbiome, we analyzed the stool metagenomes of transgender individuals before and after the initiation of testosterone treatment. In this pilot project, we found a modest impact on the microbiome community structure but an increase in the abundance of metabolic pathways that generate glutamate and spare glutamate consumption. We propose that the host uses glutamate to generate arginine, decreasing the amount available for the microbiome.
Medical modulation of sex hormone levels is a cornerstone of treatment for many conditions that impact well-being, including cancer, fertility/infertility, gender dysphoria, and chronic metabolic diseases such as diabetes and obesity. The microbial residents of the intestine, known as the microbiota, interact with sex hormones in the intestine, and there is correlative evidence that this interaction is bidirectional. Based on these published findings, we hypothesized that transgender individuals receiving exogenous testosterone as part of their gender-affirming medical treatment might undergo changes in their intestinal microbiome. To test this, we collected 26 stool samples from nine individuals before and up to 8 months after initiation of treatment with exogenous testosterone and subjected these samples to metagenomic analysis. While no species were significantly associated with the duration of testosterone therapy, pathways that generate glutamate increased in abundance, while those that consume glutamate decreased. Glutamate is a precursor of arginine, and testosterone is known to increase levels of arginine and its metabolites in the plasma. We hypothesize that testosterone increases the uptake of glutamate by enterocytes, thus decreasing access of the microbiota to this amino acid. While this pilot study establishes the impact of testosterone therapy on the intestinal microbiome, a more comprehensive study is necessary to establish the impact of testosterone-driven metagenomic shifts on the stool metatranscriptome, the stool metabolome, and the plasma metabolome. IMPORTANCE The human intestine is inhabited by a large community of microbes known as the microbiome. Members of the microbiome consume the diet along with their human host. Thus, the metabolomes of the host and microbe are intricately linked. Testosterone alters the plasma metabolome. In particular, plasma levels of arginine and its metabolites and testosterone are positively correlated. To investigate the impact of exogenous testosterone on the microbiome, we analyzed the stool metagenomes of transgender individuals before and after the initiation of testosterone treatment. In this pilot project, we found a modest impact on the microbiome community structure but an increase in the abundance of metabolic pathways that generate glutamate and spare glutamate consumption. We propose that the host uses glutamate to generate arginine, decreasing the amount available for the microbiome.
ObjectiveTo explore the potential correlation between gallstone disease (GSD) prevalence and circadian syndrome (CircS).MethodsThe cross-sectional research utilized data spanning 2017 to March 2020, sourced from the National Health and Nutrition Examination Survey (NHANES). The GSD data were collected via questionnaires, with appropriate sample weights applied to ensure the study population was representative. Three multivariable logistic regression models were built to clarify the connection between CircS and GSD. Furthermore, subgroup analysis and interaction test were carried out, categorized based on demographic traits and lifestyle aspects, to discern the potential influence of these variables on the correlation.ResultsThe analysis included 4,126 participants, with a prevalence of 38.68% for CircS and 12.04% for GSD. The multivariable logistic regression analysis indicated a positive correlation between CircS and the prevalence of GSD (Odds Ratio (OR) = 1.336, 95% Confidence Interval (CI): 1.048, 1.702). When stratified by the number of CircS components, a positive correlation was observed between the number of CircS components and the prevalence of GSD (P for trend < 0.05). In particular, individuals with six or more CircS components had a higher prevalence of GSD than those with three or fewer components (OR = 2.608, 95% CI: 1.464, 4.647). The subgroup analysis and interaction test revealed that a positive correlation between CircS and GSD prevalence was mainly observed in female individuals (OR = 1.701, 95% CI: 1.236, 2.341) and individuals not engaged in moderate activity (OR = 1.990, 95% CI: 1.158, 3.418).ConclusionThere is a positive correlation between CircS and GSD prevalence, particularly among females and individuals not engaging in moderate activity. These findings offer new insights for research directions in GSD and may impact preventive and therapeutic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.