Heart failure (HF) is a growing concern, with significant implications for mortality, morbidity, and economic sustainability. Traditionally viewed primarily as a hemodynamic disorder, recent insights have redefined HF as a complex systemic syndrome, emphasizing the importance of understanding its multifaceted pathophysiology. Fluid overload and congestion are central features of HF, often leading to clinical deterioration and hospital admissions, with the role of the lymphatic system previously largely overlooked, partly due to diagnostic challenges and visualization difficulties. With the advancement of those techniques, pathophysiological changes occurring in the lymphatic system during HF, such as enlargement of the thoracic duct and the increased lymphatic flow, are now becoming apparent. This emerging research has begun to uncover the interplay between lymphatic dysfunction and HF, suggesting novel therapeutic targets. Advances in molecular biology, such as targeting vascular endothelial growth factor and promoting lymphangiogenesis, hold promise for improving lymphatic function and mitigating HF complications. This article provides a comprehensive overview of the evolving landscape of lymphatic system-targeted therapies for HF. It explores various intervention levels, from mechanical lymphatic decongestion to pharmaceutical interactions and lymphatic micro-circulation, offering insights into future directions and potential clinical implications for HF management.