Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Ciliates represent a morphologically and genetically distinct group of single-celled eukaryotes that segregate germline and somatic functions into two types of nuclei and exhibit complex cytogenetic events during the sexual process of conjugation, which is under the control of the so-called "mating type systems". Studying conjugation in ciliates may provide insight into our understanding of the origins and evolution of sex and fertilization. In the present work, we studied in detail the sexual process of conjugation using the model species Euplotes vannus, and compared these nuclear events with those occurring in other ciliates. Our results indicate that in E. vannus: 1) conjugation requires about 75 hours to complete: the longest step is the development of the new macronucleus (ca. 64h), followed by the nuclear division of meiosis I (5h); the mitotic divisions usually take only 2h; 2) there are three prezygotic divisions (mitosis and meiosis I and II), and two of the eight resulting nuclei become pronuclei; 3) after the exchange and fusion of the pronuclei, two postzygotic divisions occur; two of the four products differentiate into the new micronucleus and macronucleus, respectively, and the parental macronucleus degenerates completely; 4) comparison of the nuclear events during conjugation in different ciliates reveals that there are generally three prezygotic divisions while the number of postzygotic divisions is highly variable. These results can serve as reference to investigate the mating type system operating in this species and to analyze genes involved in the different steps of the sexual process.
Ciliates represent a morphologically and genetically distinct group of single-celled eukaryotes that segregate germline and somatic functions into two types of nuclei and exhibit complex cytogenetic events during the sexual process of conjugation, which is under the control of the so-called "mating type systems". Studying conjugation in ciliates may provide insight into our understanding of the origins and evolution of sex and fertilization. In the present work, we studied in detail the sexual process of conjugation using the model species Euplotes vannus, and compared these nuclear events with those occurring in other ciliates. Our results indicate that in E. vannus: 1) conjugation requires about 75 hours to complete: the longest step is the development of the new macronucleus (ca. 64h), followed by the nuclear division of meiosis I (5h); the mitotic divisions usually take only 2h; 2) there are three prezygotic divisions (mitosis and meiosis I and II), and two of the eight resulting nuclei become pronuclei; 3) after the exchange and fusion of the pronuclei, two postzygotic divisions occur; two of the four products differentiate into the new micronucleus and macronucleus, respectively, and the parental macronucleus degenerates completely; 4) comparison of the nuclear events during conjugation in different ciliates reveals that there are generally three prezygotic divisions while the number of postzygotic divisions is highly variable. These results can serve as reference to investigate the mating type system operating in this species and to analyze genes involved in the different steps of the sexual process.
As a model organism in studies of cell and environmental biology, the free-living and cosmopolitan ciliated protist Euplotes vannus has more than ten mating types (sexes) and shows strong resistance to environmental stresses. However, the molecular basis of its sex determination mechanism and how the cell responds to stress remain largely unknown. Here we report a combined analysis of de novo assembled high-quality macronucleus (MAC; i.e. somatic) genome and partial micronucleus (MIC; i.e. germline) genome of Euplotes vannus. Furthermore, MAC genomic and transcriptomic data from several mating types of E. vannus were investigated and gene expression levels were profiled under different environmental stresses, including nutrient scarcity, extreme temperature, salinity and the presence of free ammonia. We found that E. vannus, which possesses gene-sized nanochromosomes in its MAC, shares a similar pattern on frameshifting and stop codon usage as Euplotes octocarinatus and may be undergoing incipient sympatric speciation with Euplotes crassus. Somatic pheromone loci of E. vannus are generated from programmed DNA rearrangements of multiple germline macronuclear destined sequences (MDS) and the mating types of E. vannus are distinguished by the different combinations of pheromone loci instead of possessing mating type-specific genes. Lastly, we linked the resilience to environmental temperature change to the evolved loss of temperature stress-sensitive regulatory regions of HSP70 gene in E. vannus. Together, the genome resources generated in this study, which are available online at Euplotes vannus DB (http://evan.ciliate.org), provide new evidence for sex determination mechanism in eukaryotes and common pheromone-mediated cell-cell signaling and cross-mating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.