Diabetic foot ulcers (DFUs) are very important diabetes-related lesions that can lead to serious physical consequences like amputations of limbs and equally severe social, psychological, and economic outcomes. It is reported that up to 25% of patients with diabetes develop a DFU in their lifetime, and more than half of them become infected. Therefore, it is essential to manage infection and ulcer recovery to prevent negatives outcomes. The available information plays a significant role in keeping both physicians and patients aware of the emerging therapies against DFUs. The purpose of this review is to compile the currently available approaches in the managing and treatment of DFUs, including molecular and regenerative medicine, antimicrobial and energy-based therapies, and the use of plant extracts, antimicrobial peptides, growth factors, ozone, devices, and nano-medicine, to offer an overview of the assessment of this condition.2 of 32 history [2]. DFUs are one of the most severe complications of diabetes, and more than half of those ulcers become infected. Every single one of these infected lesions has the potential to get worse and compromise the integrity of the lower limbs. To avoid amputations and improve the patient's quality of life, it is very important to implement a strict program for the prevention and treatment of ulcers, as well as proper management of infections [3]. Thus, it is critical to keep diabetes patients aware of new therapies and treatments and their availability in the healthcare system. The treatment of DFUs requires a multidisciplinary approach with proper medical tools, skills, and knowledge. This starts from patient education, with the application of new classifications to guide the treatment to prevent amputations. New diagnosis methods should become available, such as the 16S ribosomal DNA sequence in bacteria, to provide a better understanding of the microbiota in DFUs. It is reported that DFU has a polymicrobial nature, and, according to its geographical location, certain marked differences, wound characteristics, antibiograms according to local epidemiology, individualized antimicrobial guided therapy, regular debridement, regular assessment of wounds, and change of dressings. The latter characteristics are also aided by new biological and molecular therapies that were proven to improve infection control, the regulation of the local inflammatory profile, and improved quality of the cicatrizing process. In the next sections, this review presents an approach for the diagnosis and treatment of DFUs, focusing on the current advances in antimicrobial therapies, such as dressings,