Background: Esophageal squamous cell carcinoma (ESCC) is a gastrointestinal malignancy with high incidence. This study aimed to reveal the complete circRNA-miRNA-mRNA regulatory network in ESCC and validate its function mechanism. Method: Expression of OTU Domain-Containing Ubiquitin Aldehyde-Binding Protein 2 (OTUB2) in ESCC was analyzed by bioinformatics to find the binding sites between circRNA6448-14 and miR-455-3p, as well as miR-455-3p and OTUB2. The binding relationships were verified by RNA Immunoprecipitation (RIP) and dualluciferase assay. The expressions of circRNA6448-14, miR-455-3p, and OTUB2 were detected by quantitative real-time polymerase chain reaction (qRT-PCR). MTT assay measured cell viability, and the spheroid formation assay assessed the ability of stem cell sphere formation. Western blot (WB) determined the expression of marker proteins of stem cell surface and rate-limiting enzyme of glycolysis. The Seahorse XFe96 extracellular flux analyzer measured the rate of extracellular acidification rate and cellular oxygen consumption. Corresponding assay kits assessed cellular glucose consumption, lactate production, and adenosine triphosphate (ATP) generation. Results: In ESCC, circRNA6448-14 and OTUB2 were highly expressed in contrast to miR-455-3p. Knocking down circRNA6448-14 could prevent the glycolysis and stemness of ESCC cells. Additionally, circRNA6448-14 enhanced the expression of OTUB2 by sponging miR-455-3p. Overexpression of OTUB2 or silencing miR-455-3p reversed the inhibitory effect of knockdown of circRNA6448-14 on ESCC glycolysis and stemness. Conclusion: This research demonstrated that the circRNA6448-14/miR-455-3p/OTUB2 axis induced the glycolysis and stemness of ESCC cells. Our study revealed a novel function of circRNA6448-14, which may serve as a potential therapeutic target for ESCC.